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Abstract 

A modified Patterson superposition procedure is presented in 
which multiple vectors instead of single vectors are utilized. 
It is demonstrated that by using certain guidelines a map 
which results from a superposition using a multiple vector 
can be shifted and superimposed on itself to yield an image of 
the structure containing many fewer extraneous peaks. 

In recent years much crystallographic emphasis has been 
placed on direct methods, such as MULTAN (Main, 
Woolfson & Germain, 1971), to obtain trial structures when 
the 'heavy-atom' Patterson analysis is inapplicable. In 
general these techniques are dependent on knowledge of the 
space group and frequently prove ineffective in analyses 
involving crystals of low symmetry. 

The Patterson superposition method (Beevers & 
Robertson, 1950; McLachlan, 1957; Buerger, 1959)has  
been one of the techniques investigators have turned to when 
direct methods have not been successful. Here, specific 
information regarding the space group is not a necessity and 
fragments of molecules can be easily recognized in the course 
of the application of the superposition technique. However, 
the deconvolution of N images (N being the number of 
atoms in the unit cell) contained in the Patterson function 
usually requires the selection of a series of shift vectors of 
low multiplicity, all of which must be in the same image of 
the structure. This then is the major source of difficulty with 
the Patterson superposition method. As the number of atoms 
in a unit cell increases, the complexity of the Patterson 
function increases a s  N 2 and the vectors of low multiplicity 
become harder to find and are more readily perturbed by the 
larger surrounding peaks. In this communication we present 
a modification of the basic Patterson superposition technique 
that uses vectors of higher multiplicity and can lead to a sub- 
stantial reduction in the number of extraneous accidental 
peaks on the final superposition map. 

In the point-atom approximation the Patterson function 
can be represented as the vector set {Ay -- Ai}, in which i 
and j can assume any value from 1 to N (where N is the 
number of atoms in the unit-cell) and A i is the vector from 
the origin to atom j .  If one selected a vector of double or 
greater multiplicity for a shift vector, e.g. A 2 -  A~ -- A 4 -  A3, 

AI A 2 

A3 ~ ~ A  4 

then the superposition procedure should select that sub- 
set corresponding to the junction of the shifted and unshifted 
Patterson functions as follows. Let 

i = 1 ,  . . . , N  
SetI----{Aj--A/} j = I , - . . , N ,  
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then f AA} {SetI}N S e t I +  
A 4 -- A 3 

: { A j -  A~}, {A 2 - Ai}, { A j -  A3}, {A 4 - A/} 

= Set II. 

The occurrence of a multiple vector in the Patterson 
function signifies that a parallelogram must exist in the 
structure. Therefore a shift of Set II by the negative of the 
original shift vector should bring the head of the related 
vector into coincidence with its tail and hence point out the 
best possibilities for the other side of the parallelogram (i.e. 
A 3 - A~ above). Note that this should be at least a vector of 
multiplicity two in the original Patterson function. 

Once this vector has been singled out, it is a simple matter 
to obtain the mathematical equivalent of that which would 
have been obtained by using the diagonal of the parallelo- 
gram, A 4 - A 1 (a single vector in this example), by carrying 
out the superposition using Set II on Set II with a shift cor- 
responding to the other leg of the parallelogram, A 3 - A~ = 
A 4 -- A 2. 

Thus 

A 3 -- AI'[ i = 1, . . . ,  N 
{SetII}13 S e t I I +  

A 4 - -  A 2f j = 1, . . . ,  N 

= {Aj--  A1}, {A 4 - A i }  

= Set III. 

There are two distinct advantages to this approach. First, 
the use of the multiple vectors allows a much more accurate 
definition of the parallelogram. Second, since Set III is 
obtained by superposition of two maps containing ~ 4 N  
peaks each, instead of two maps containing -,.N 2 peaks each, 
the number of extraneous peaks is significantly reduced 
yielding a result which is' much easier to interpret. Set III 
would be equivalent to doing three ordinary minimum 
function superpositions using both sides of the parallelo- 
gram plus the diagonal. The requirement of the existence of a 
parallelogram in the structure is a limitation but not a severe 
one since such must exist for centrosymmetric structures and 
very often occur in non-centrosymmetric structures 
(aromatic compounds, for example). 

To explore the applicability of this modification of the con- 
ventional Patterson superposition procedure, it was tested on 
an organophosphorus insecticide, O,O-dimethyl-O-(3,5,6-tri- 
chloro-2-pyridylphosphorothioate), (Beckman & Jacobson, 
1979a), that crystallizes in the low-symmetry space group 
P1 and contains 64 non-hydrogen atoms in the unit cell. 
Both direct methods and standard Patterson superposition 
methods had failed to yield any reasonable trial structure. A 
simple change in an existing PL/1 superposition procedure 
(Hubbard, Babich & Jacobson, 1977) was made to allow the 
resultant map from a prior run to be used in place of the 
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sharpened Patterson map as the map to be ~shifted and a trial 
structure determination was carried out using the modified 
superposition approach described above. The resulting map 
readily identified the positions of all the larger atoms in the 
structure and the correct placement of the origin. (The mid- 
point of the diagonal vector coincided with the crystallo- 
graphic center of symmetry.) Examination of the map 
revealed that of those 67 peaks greater than 70 in height on 
an arbitrary scale (with 435 as maximum) 74% of these 
corresponded to atoms in the structure (50 of the 64 atoms 
in the structure). A standard superposition using the same 
single vector (the diagonal) yielded 300 peaks over 70 in 
height on the same scale and only 21% of these correspon- 
ded to atoms in the structure. 

As a second test case, CP2Fe2(CO)3CS [dicarbonylbis(r/- 
cyclopentadienyl)-#-carbonyl-#-thiocarbonyldiiron ] 
(Beckman & Jacobson, 1979b), another structure that had 
not previously been determined, was used. It contains 160 
non-hydrogen atoms in a unit cell of P2,/c symmetry, i.e. 40 
non-hydrogen atoms per asymmetric unit. Again a peak 
corresponding to a multiple vector was chosen from the 
sharpened Patterson map and a second shift-vector from the 
backshifted map. In this case the vector corresponding to the 
diagonal across the parallelogram did not contain the true 
inversion center and two images resulted. An additional 
vector was readily selected that belonged to one of these 
images and one further superposition using this vector 
yielded a map in which 87% of the peaks greater than 100 in 
height on an arbitrary scale corresponded to actual atomic 
positions. 

We have demonstrated that a modified Patterson super- 
position using multiple vectors is a viable method for 
obtaining a good trial structure and is especially applicable to 
those structures where size and/or low symmetry inhibits 
solution by other conventional techniques. The method also 
involves a relatively minimal amount of computer time. A 
program listing is available on request. 

This work was supported by the US Department of 
Energy, Office of Basic Energy Sciences, Materials Sciences 
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Abstract 
It is shown that for any type of motion of atomic nuclei the 
following hold in the Born-Oppenheimer approximation of 
the wave functions: (1) the structure factors for the Bragg 
intensities are given by the Fourier transform of the average 
density in the unit cell, (2) for the Bragg intensities, the 
Boltzmann weight factor of a thermal state appears as a 
factor of the amplitude (and not of the intensity). 

The thermal motions of atomic nuclei constantly change 
the electron density distribution in a crystal. In electron 
density studies it is important to know which density 
distribution is related to the Bragg intensities. Marshall & 
Lovesey (1971) have shown, for neutron diffraction by 
crystals, that the Bragg intensities can be understood to be 
the coherent elastic scattering at average atomic nuclei, 
where the average is taken over all nuclear spin orientations 
and random isotope distributions in the crystal. One would 
expect that a corresponding result would hold for the thermal 
motions of the nuclei in the crystal. Marshall & Lovesey's 
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(1971) calculation was carried out in the convolution 
approximation, which holds rigorously for atomic nuclei. 
But for X-ray diffraction on the electron density distribu- 
tion in the crystal, the convolution approximation breaks 
down in the regions of the chemical bonds, since one cannot 
assume that these density regions move rigidly with any of 
the adjacent nuclei. Hence, for X-ray diffraction, our 
question concerning which density distribution gives rise to 
Bragg scattering is posed in a more general form. In this 
paper we shall discuss it within the limits of the Born- 
Oppenheimer approximation of the wave functions. 

In the Born-Oppenheimer approximation we assume that 
the electron density distribution p(x,Q) rearranges itself 
instantly for every configuration Q of the nuclear positions. 
Hence, the average density is given by 

p(X)av = f p(x,Q) f (Q)  dQ, (1) 

where the distribution function of the nuclear coordinates, 
f (Q) ,  is assumed to be normalized, i.e. 

f f (Q)  dQ = 1. (2) 
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